A Nuclear Gusher

Posted by Rick Mills: Ahead of the Herd

Share on Facebook

Tweet on Twitter

Nuclear Boom

Nuclear BoomAs a general rule, the most successful man in life is the man who has the best information

Concerns about climate change, carbon footprints, energy security and the rising cost of fossil fuels spurred a revival of interest in nuclear power generation. In early 2010 we saw the start of a of a global nuclear renaissance. It was derailed when the unfortunate Fukushima-Daiichi nuclear power plant accident paused the renaissance for reactor safety inspections.


Why was there a bull market in uranium developing, can it survive and overcome the negative fallout from Fukushima-Daiichi? A quick review of nuclear powers fundamentals are in order:

  • Coal and natural gas plants emit carbon dioxide emissions and natural gas needs an incredible amount of investment in pipelines and supporting infrastructure
    Operating a 1,000-MW coal plant, for one year, produces 30,000 truckloads of ash that contains large amounts of carcinogens and toxins. Every second, up the smokestack, goes 600 pounds of carbon dioxide and ten pounds of sulfur dioxide
  • Extensive use of hydrogen is not practical due to its volatile nature and lack of infrastructure
  • Solar, wind and geothermal are all niche suppliers and are untried on a large scale. Geothermal seems to be limited to a few parts of any country and all three alternative means of generating electricity need massive investment in power transmission lines to get the power to where it’s needed. All three of these technologies are extremely important and each will successfully contribute, in a small way, to energy independence. But none are, today, capable of supplying base load power
  • A 1,000-MW solar plant would cover 129 to 259 square kilometers and use a thousand times the material needed to construct a nuclear plant of the same capacity.
  • To equal the output of South Korea’s Yongwangs six one-thousand-megawatt nuclear reactors, wind generators would require an area 245 kilometers wide extending from San Francisco to Los Angeles. Solar would require roughly 52 square kilometers of collector area.
  • High emissions, a negative energy return and severe environmental costs are associated with ethanol and make its use impractical
  • Hydro – going to clean eco-friendly energy isn’t accomplished by damming what free-flowing rivers are left

….read more HERE (start with the next chart)